1. <acronym id="fv88g"></acronym>
          <code id="fv88g"></code>
        2. <code id="fv88g"><rt id="fv88g"><source id="fv88g"></source></rt></code>

          <code id="fv88g"><delect id="fv88g"></delect></code>
        3. [1]趙倩,楊斌,李星,等.基于圖版法決策樹在流體識別中的應用[J].測井技術,2018,42(06):641-646.[doi:10.16489/j.issn.1004-1338.2018.06.006]
           ZHAO Qian,YANG Bin,LI Xing,et al.Application of Cross-plot-based Decision Tree Template Method in Fluid Identification[J].WELL LOGGING TECHNOLOGY,2018,42(06):641-646.[doi:10.16489/j.issn.1004-1338.2018.06.006]
          點擊復制

          基于圖版法決策樹在流體識別中的應用()
          分享到:

          《測井技術》[ISSN:1004-1338/CN:61-1223/TE]

          卷:
          第42卷
          期數:
          2018年06期
          頁碼:
          641-646
          欄目:
          處理解釋
          出版日期:
          2018-12-31

          文章信息/Info

          Title:
          Application of Cross-plot-based Decision Tree Template Method in Fluid Identification
          文章編號:
          1004-1338(2018)06-0641-06
          作者:
          趙倩楊斌李星王少龍魏杰
          成都理工大學能源學院,四川成都610059
          Author(s):
          ZHAO QianYANG BinLI XingWANG ShaolongWEI Jie
          Energy College, Chengdu University of Technology, Chengdu, Sichuan 610059, China
          關鍵詞:
          測井解釋流體識別交會圖版決策樹模型數據挖掘
          Keywords:
          log interpretation fluid identification cross-plot decision tree model data mining
          分類號:
          TE1122;P631.84
          DOI:
          10.16489/j.issn.1004-1338.2018.06.006
          文獻標志碼:
          A
          摘要:
          YD油田儲層油氣并存,受流體性質、儲層物性、地層水礦化度高等因素影響,流體測井響應特征復雜。經過多次試驗優選出7個測井及錄井參數,建立了4個圖版。通過圖版選出的參數以及各類流體測井響應特征,利用決策樹分析方法,優選出7個測井響應值作為流體的特征參數,建立流體識別決策樹模型,模型的判別準確率達到94 32%。決策樹方法有效解決了圖版法存在的不確定性、多解性的問題,且能快速高效地處理大量數據。通過傳統地球物理統計圖版法與數據挖掘決策樹法有效結合,提高了流體識別的準確率,對研究區下一步的精細油藏開發提供可靠的依據,拓展了數據挖掘在地球物理中的應用。
          Abstract:
          The reservoir characteristics of YD oilfield are the coexistence of oil and gas reservoirs. Due to factors such as fluid properties, reservoir physical properties and high formation water salinity, the log response characteristics of fluids are complex. After several experiments, seven well logging and mud logging parameters were selected, and four fluid identification templates were established. Based on the parameters selected by the template and the log response characteristics of different fluid type, the decision tree analysis method is used to optimize the log response values as the characteristic parameters of the fluid, and the fluid identification decision tree model is also established. The interpretation coincidence rate of the model reached 94 32%. This method effectively solves the problems of the template method, such as uncertainty and multiplicity, and can process large amounts of data quickly and efficiently. Through the effective combination of traditional geophysical statistical template method and data mining decision tree method, the accuracy of fluid identification is improved, which provides a reliable basis for the development of fine reservoirs in the next step of the study area and expands the applications of data mining in geophysics.

          參考文獻/References:

          [1]魏學斌, 馬建海, 楊浩, 等. 英東油田流體類型測井識別研究 [J]. 石油天然氣學報, 2012, 34(10): 64-67.
          [2]劉春雷, 魏學斌, 段朝偉, 等. 基于測井曲線相關系數及包絡面積的流體識別方法 [J]. 科學技術與工程, 2018(2): 223-226.
          [3]汪佳蓓, 黃捍東. 基于BP神經網絡的疊前流體識別方法 [J]. 成都理工大學學報(自然科學版), 2016, 43(6): 663-670.
          [4]趙搖軍, 盧一凡, 李宗杰, 等. 基于密度聚類的K近鄰法在儲層流體識別中的應用 [J]. 中國石油大學學報(自然科學版), 2015(5): 65-71.
          [5]楊斌, 匡立春, 孫中春. 神經網絡及其在石油測井中的應用 [M]. 北京: 石油工業出版社, 2005.
          [6]MAHMOUD A A A, ELKATATNY S, MAHMOUD M, et al. Determination of the total organic carbon (TOC) based on conventional well logs using artificial neural network [J]. International Journal of Coal Geology, 2017: 179.
          [7]田苗苗. 數據挖掘之決策樹方法概述 [J]. 長春大學學報, 2004, 14(6): 48-51.
          [8]羅玲玲. 烏南油田N_2-1油藏低阻油層的識別 [D]. 重慶: 重慶科技學院, 2016.
          [9]丁次乾. 礦場地球物理 [M]. 青島: 中國石油大學出版社, 2008.
          [10]張文姣. 復雜儲層流體性質識別方法研究 [D]. 北京: 中國石油大學, 2011.
          [11]李洪奇, 譚鋒奇, 許長福, 等. 基于決策樹方法的礫巖油藏巖性識別 [J]. 測井技術, 2010, 34(1): 16-21.
          [12]王禮常, 王志章, 陶果. 樣本分解交匯圖法與決策樹方法識別蘇丹某油田流體性質 [J]. 科技導報, 2012, 30(2): 22-27.
          [13]邵旻暉. 決策樹典型算法研究綜述 [J]. 電腦知識與技術, 2018, 14(8): 175-177.

          相似文獻/References:

          [1]趙軍龍,李甘,李傳浩,等.鄂爾多斯盆地Z區長81儲層流體快速識別技術研究[J].測井技術,2012,36(05):485.
           ZHAO Junlong,LI Gan,LI Chuanhao,et al.Research on the Fast Identification Technique about Fluid Property of Chang 81 Reservoirs at Z Block in Ordos Basin[J].WELL LOGGING TECHNOLOGY,2012,36(06):485.
          [2]關麗.偶極子聲波測井在羅家地區沙三段泥頁巖儲層評價中的應用[J].測井技術,2012,36(05):495.
           GUAN Li.Application of Dipole Acoustic Logging to Shale Reservoir Evaluation of Luojia Area[J].WELL LOGGING TECHNOLOGY,2012,36(06):495.
          [3]趙永剛,冉利民,吳非.螺紋井眼測井曲線頻域濾波校正[J].測井技術,2012,36(05):499.
           ZHAO Yonggang,RAN Limin,WU Fei.Frequency Domain Filtering Correction of Log Data from a Corkscrew Borehole[J].WELL LOGGING TECHNOLOGY,2012,36(06):499.
          [4]李山生,黃質昌,杜蕊,等.WaxmanSmits模型中參數B和QV計算方法研究[J].測井技術,2012,36(03):244.
           LI Shansheng,HUANG Zhichang,DU Rui,et al.Study on Computational Methods of Parameter B and QV in WaxmanSmits Model[J].WELL LOGGING TECHNOLOGY,2012,36(06):244.
          [5]陳明江,任興國.含瀝青儲層的測井識別及評價[J].測井技術,2012,36(03):272.
           CHEN Mingjiang,REN Xingguo.Log Identification and Evaluation for Bitumenbearing Reservoir[J].WELL LOGGING TECHNOLOGY,2012,36(06):272.
          [6]程玉梅,張小剛,魏國.介電掃描測井技術在長慶油田的應用[J].測井技術,2012,36(03):277.
           CHENG Yumei,ZHANG Xiaogang,WEI Guo.Application of Dielectric Scanner Logging in Changqing Oilfield[J].WELL LOGGING TECHNOLOGY,2012,36(06):277.
          [7]孫建孟,閆國亮.滲透率模型研究進展[J].測井技術,2012,36(04):329.
           SUN Jianmeng,YAN Guoliang.Review on Absolute Permeability Model[J].WELL LOGGING TECHNOLOGY,2012,36(06):329.
          [8]宋延杰,么麗娜,徐廣田,等.長垣地區低孔隙度低滲透率砂巖儲層中連通導電模型的應用[J].測井技術,2012,36(04):345.
           SONG Yanjie,YAO Lina,XU Guangtian,et al.Study on Connectivity Model for Low Porosity and Permeability Sand Reservoirs in Daqing Placanticline[J].WELL LOGGING TECHNOLOGY,2012,36(06):345.
          [9]張麗華,潘保芝,劉思慧,等.梨樹斷陷東南斜坡帶砂礫巖巖性識別方法研究[J].測井技術,2012,36(04):370.
           ZHANG Lihua,PAN Baozhi,LIU Sihui,et al.On Lithology Identification Methods of Glutinite in Southeast Ramp Region of Lishu Fault Depression[J].WELL LOGGING TECHNOLOGY,2012,36(06):370.
          [10]張盼,馮吉坤,李雪磊,等.火山巖中CO2儲層的自動識別[J].測井技術,2012,36(04):373.
           ZHANG Pan,FENG Jikun,LI Xuelei,et al.Automatic Identification of CO2Bearing Beds in the Volcanic Reservoir[J].WELL LOGGING TECHNOLOGY,2012,36(06):373.
          [11]李燕.東營沙四段灘壩砂儲層及流體測井識別方法[J].測井技術,2009,33(02):143.
           LI Yan.Log Identification of Beach-bar Sandbodies Reservoir and Fluid of No.4 of Shahejie Formation in Dongying Rift Lacustrine Basin[J].WELL LOGGING TECHNOLOGY,2009,33(06):143.
          [12]范宜仁,李真,李虎,等.酒東營爾凹陷儲層流體識別技術[J].測井技術,2011,35(05):431.
           FAN Yiren(),LI Zhen(),LI Hu(),et al.Reservoir Fluid Identification for the Jiudong Yinger Sag[J].WELL LOGGING TECHNOLOGY,2011,35(06):431.
          [13]張芳,劉旭武,石丹紅,等.吉林油田某區測井精細解釋模型的建立及應用[J].測井技術,2002,26(06):481.
           Zhang Fang,Liu Xuwu,Shi Danhong,et al.Fine Log Interpretation Model of an Area in Jilin Oilfield and Its Application.[J].WELL LOGGING TECHNOLOGY,2002,26(06):481.

          備注/Memo

          備注/Memo:
          第一作者:趙倩,女,1994年生,碩士研究生,從事油氣田開發地質、地球物理綜合解釋方面的研究工作。E-mail:[email protected] 通訊作者:楊斌,男,1967年生,博士,教授,從事油氣田開發地質、地球物理綜合解釋方面的研究工作。E-mail:[email protected]
          更新日期/Last Update: 2018-12-31
          内蒙古11选5开奖走势图